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Abstract. The non-linear system of equations of the sine-Gordon type, describing waves 
in Josephson superlattices, is investigated in the framework of the piecewise-linear model. 
A detailed quantitative analysis of the fluxon states and their bifurcations in the simple 
case of the system of two identical semi-infinite Josephson junctions, placed in an external 
magnetic field, is carried out. 

1. Introduction 

The possibilities of using solitons in Josephson junctions (JJ)  in memory and switching 
elements of computers have been repeatedly discussed and are well known [l]. But 
the concrete realisation of their advantages requires a detailed theoretical and experi- 
mental study of physical phenomena in JJ.  In particular, for applications it is of interest 
to know the character of the interaction of fluxons with the boundaries of real physical 
systems and with inhomogeneities in the internal structure of JJ systems (JJS). Usually 
this interaction has been studied by means of different variants of perturbation theory 
[2], in which the moving one- or multi-soliton states in a homogeneous infinite junction 
are taken as unperturbed states. The effect of the perturbation in this approach is 
taken into account by considering the soliton as a deformable particle which is acted 
upon by friction forces, causing the dissipation of the energy in the junction. But such 
a description becomes inapplicable when solitons are strongly deformed by the interac- 
tion with the inhomogeneity or with the boundary of the physical system. This happens, 
for example, when the fluxon is localised on the inhomogeneity or the fluxon tears 
away from the boundary of the JJ in a strong magnetic field. Analytical and numerical 
methods which in principle allow one to obtain exact solutions for problems of this 
type were considered in [3-51. 

But it should be emphasised that a detailed analysis of the analytical properties of 
the exact solution does not always appear to be possible. This turns out to be the case 
when studying some properties of the JJ (e.g. the stability of solutions, the dependence 
of the supercurrent on external magnetic field, etc.). It is known that the phase 
difference between the macroscopic quantum wavefunctions of two superconductors, 
forming the junction, possesses direct physical meaning and is described by the 
sine-Gordon equation. The solutions of this equation can be expressed, in principle, 
in terms of elliptic functions [3,5], whose properties essentially depend on certain 
parameters. However, when one attempts to formulate the boundary conditions, which 
are of physical interest, there appear complicated transcendent equations for these 
parameters. To deal with this difficulty, Gal’pern and Filippov [ 5 ]  proposed the 
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piecewise-linear model, which admits a solution in terms of elementary functions and 
is in good agreement with numerical calculations of the exact expressions. It was 
shown that fluxon bound states on attractive inhomogeneities in the JJ exhibit non-trivial 
bifurcations (i.e. appearance or disappearance of a number of solutions for some 
critical values of the external parameters) under a change of the external magnetic 
field. We have used this model for the detailed quantitative study of the bound states 
of fluxons in JJ and their bifurcations [6,7]. 

A certain amount of attention has recently been given to Josephson superlattices, 
i.e. systems consisting of alternating layers S-N-S- . . . or S-I-S- . . . [ 8 , 9 ] .  This opens 
up new possibilities for studying the radiation from multilayer systems [ 101 and fluxon 
interaction, since by varying parameters of the JJS it is possible to change the fluxon’s 
characteristics. Some of these parameters were mentioned above; we also note the 
influence which geometrical scales and the coupling between different junctions, 
forming the JJS, have on the properties of the whole system. For example, the system 
with two different weakly coupled homogeneous junctions, placed in a constant 
magnetic field, was considered in [ l l ] .  In this case a vortex lattice arises in one of 
the junctions, while the fluxon in the other junction will be moving in the field of the 
periodic potential created by this vortex lattice. The effect of weak coupling causes 
the appearance of an additional resonance peak on the I-V characteristic, which is 
absent on the I-V characteristic of an isolated JJ.  Besides, in [12] it was shown that 
if the velocities of fluxons moving in two neighbouring junctions differ by a small 
amount, then their mutual capture occurs. We also note the interesting results of the 
investigation of different dynamical processes with fluxons in JJS presented in [ 131. In 
particular, the destructive collision between a low-frequency breather and a fast fluxon, 
belonging to the mate junction, was considered in the framework of the adiabatic 
approximation (i.e. without taking into account the radiative losses [ 2 ] )  and a condition 
was found, under which a breather decays into a free fluxon-antifluxon pair. The 
radiative effects which accompany the interaction between fluxons from the same or 
different junctions were also considered. 

In the present paper, with the help of the piecewise-linear model, we investigate 
the non-linear system of equations of the sine-Gordon type, which describes waves in 
the Josephson superlattice. We perform a detailed quantitative analysis of the fluxon 
states and their bifurcations in the simple case of a system of two identical semi-infinite 
JJ placed in an external magnetic field. The static distributions of the magnetic flux 
in an inhomogeneous Josephson system were also investigated. We have shown that 
in the inhomogeneous case a richer picture of the states is obtained and have studied 
in detail some of those states which are stable. Such analysis of the stable static states 
(and their bifurcations) is of interest precisely because they are the states of equilibrium 
through which the system can pass during its time evolution. 

2. The piecewise-linear model for the case of JJS 

Let us consider the system of two long+ JJ of the S-I-S type, placed in an external 
magnetic field of intensity ho (see figure 1 ) .  Let us suppose that the coupling (interac- 
tion) between the junctions is weak. By this we mean the following. As is well known, 

t A J J  is usually called long if the condition w << A, << I is satisfied, where w is the width and I is the length 
of the JJ [2]. 
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Figure 1. 

the penetration region of electromagnetic waves into a JJ is restricted to the thin layer 
of dielectric plus the neighbouring regions of superconducting films with thickness of 
the order of A L .  Thus the field in the I layer can interact with external fields on the 
edges of the junction only (assuming that the thickness d of the superconducting layers 
is much greater than the London penetration depth AL) .  Then, because of the very 
small thickness of the I layer, the coupling between the JJ is very small. At any point 
of the I layer of each JJ a magnetic field will be observed, created by the other junction, 
but decreased by the factor exp(-d/A,) owing to screening by the superconducting 
strip of the thickness d, which separates the I layers of the two JJ. 

The penetration depth of the electric field is negligibly small compared with A L  
and therefore the dependence on the electric field is not discussed. 

The derivation of a system of equations describing the wave in the system of two 
weakly coupled junctions is presented in sufficient detail in [ 121, while for the case of 
a system consisting of a JJ and a waveguide, formed by superconducting layers and 
filled by dielectric, is given in [ll]. Here we shall make use of these relations [ 1 2 ] ,  
expressed in dimensionless variables (as regards dimensions see, e.g., [ 1,2, 141): 

~ Y ( x ,  t ) +  y14;(x, t )  - a l & ( x ,  t )  - & ( x ,  t )  =sin + l ( x ,  t )  

4 t” (x ,  t ) +  r 2 4 ~ ( x ,  t )  - a2d2(x, t )  - &(x,  t )  =sin 42(xy t )  
(1) 

where &(X, t )  = &#&(x, t ) / d t  and 4 ; ( x Y  t )  = a 4 ( x ,  t)/dx; &(X, t )  is the phase difference 
between the macroscopic quantum wavefunctions of the two superconductors in the 
kth JJ (k  = 1 , 2 ) ;  &(X, t )  = 27r@k(x, t ) / Q 0  where @k(X, t )  is the magnetic flux and 
@,,= .rrhc/e is a quantum of the magnetic flux; (Yk is the dissipation coefficient and 
Yk is the parameter mentioned above, which characterises the coupling between the JJ 

of a system. Because of the identity of both junctions y1 = y2  = y and a1 = cy2 = a. The 
boundary condition for the problem, described by ( l) ,  has the form 

4 ; ( x ,  t )  = h ,  + X X ,  2 )  = h2. (2) 
When investigating the system (1) we shall take into account only those solutions 
which are stable with respect to small fluctuations. To this end we represent perturbed 
solutions as 

4 k ( %  t )  = d k ( X ) + $ k ( X )  exp[-(hy+i6)?] (3) 

4Y(dx)+ ~ 4 ; ( , , ( x )  =sin 41(2)(x) (4) 

( 5 )  

and, substituting (3) in ( l ) ,  we obtain the equation for static states in JJS 

and the stability condition for these states 

-[$;(2)(x) + Y $ ; u ) ( x ) I +  $l (Z)(X)  cos 4 1 ( 2 ) ( X )  = @ 2 $ l ( 2 ) ( x )  cL;(2)(0) = 0 
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where w 2  = $a‘+ 6’. Thus $(x) are eigenfunctions of the linear boundary problem 
(5)  with eigenvalues w 2 .  From (3) it now follows that the perturbed solution will not 
be increasing (i.e. will be stable) provided that the lowest eigenvalue w i  is positive. 
The expansion (3)  describes the evolution in time of any small perturbation [ 5 ,  151. 
If w i > O ,  then wo defines the response frequency of the system d(x)  to any small 
perturbation, if  w i < O ,  then the state is unstable, but when IWii = Iw$+icu2<< 1 it is 
possible to speak about its lifetime. Thus, for the complete characterisation of the 
static state it is necessary to know the lowest eigenfrequency. 

For the Josephson currents in the identical junctions under consideration we shall 
employ the continuously differentiable approximation [ 5-  71 

1 -COS 4 k ( ~ )  E f( -1) ”( d I ( x )  - TN,)’ S i r 2 [  1 - (-1) N ~ ]  (6) 

on the intervals ( NI,‘) -$ )T  c C $ ~ ( ~ , ( X )  S (N, , , ,+$)T,  where NI,,, are integers. Then 
differentiating (6) with respect to 4 we obtain for (4) the piecewise-linear approximation 

(7) 

while for the boundary value problem ( 5 )  one more differentiation gives a piecewise- 
continuous approximation for cos 4: 

4’l(,,(X)+ Y 4 4 ( l , ( X )  = ( - l ) N J % b l o ) ( x )  - TNIUJ 

- [ $ L ( X )  + Y $ 4 , 1 , ( X ) l +  (-1Yv1wI(2)(x) = w2$l(z)(x). (8) 

If one sets y = 0 in ( 7 )  and (8),  then one evidently obtains equations describing the 
static states of non-interacting J J  and their eigenfrequencies. In other words, the case 
of y = 0 is simply reduced to the problem of isolated JJ in an external field (considered 
by us in [6,7]). Of physical interest is a weakly coupled system, which by definition 
corresponds to the values O <  y<< 1. In this case an  energy of the interaction between 
magnetic fields in different junctions is defined by 

W = -y  1% dx. 

Therefore such an interaction can be described by means of perturbation theory in the 
parameter y. 

Let us first consider the system ( 7 ) .  First we will find solutions of equations (7)  in 
the simplest case of NI and N2 being equal. When both N ,  and N2 are even, for the 
function 

U ( x ) =  d , ( x )  + (9) 

(1 + 7) U ” ( X ) =  U ( X )  - T N  

we obtain from ( 7 )  the equation 

( loa) 
- where N = NI + N2 = 2 N I .  The solution of ( l o a )  on the intervals x E [a,, fN+,] = I,, 

for which U ( x )  E I ,  = [ U ( * ,  1, U(Zv+ , ) ]  (where U ( f , )  = N T ) ,  has the form 

( 1 l a )  

where T = (1 + y1-l 2 ,  and a ,  and ah are constants. They are easily expressed through 
the boundary values (2)  (taking into account (9))  and the parameter xN.  Obtaining 
&(x) from ( 9 )  and substituting i t  into the first equation of the system (7 ) ,  we get 

U ( x ) -  T N  = a ,  s i n h ( d x - Z v ) )  = aAr sinh(T(x-a,+,)) 

(1 - y)d’ l (x)  + yU”(x)  = 4 , ( x )  - T N , .  (12) 
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The solution of this equation has the form 

41( X) = fT[ b NI sinh p(X - f N , )  - Cosh p (  X - fNl)] f U (  X )  

= ;T[ bkl sinh p(  X - f N , + 1 )  + Cosh p(X - f ~ ~ + l ) ]  + f U(X) (13a) 

where the function U(x)  is explicitly given by ( l l a ) ,  p = (1 - Y ) - ” ~ ,  and bN and bk 
are constants. 

In the case of odd N ,  and N 2 ,  the system (7)  yields the equation 

(1 + y )  U”(x) = -( U(x) - T N )  ( lob)  

which has solutions of the form 

V ( x ) - r N =  aN s in(T(x- fN))=a; j  sin(7(x-fN+,)). (1lb)  

Hence with the aid of (9) we find 4 , (x)  for this case 

4 1 ( X )  = iT[ bNI Sin T(x - Z N , )  - cos p(x - f ~ , ) ]  + f U ( x )  

=;T[b’,, sin P(X - f ” , + l ) + ~ ~ ~  P(X - f N , + l ) ] + i U ( ~ ) .  (136) 

Let us now consider the more general case in which N ,  is not equal to N 2 .  If N1 
is even and N2 is odd (or vice versa) the system (7) can be reduced to a differential 
equation of fourth order in 4 , (x)  (or &(x), respectively): 

(1 - y2)4Y(x) = 4 ) ( X )  - T N , .  (14) 

Its solution on the interval I N ,  is presented in the form (valid for both cases) 

~ ~ ( X ) - ? T N I = ~ T ( ~ N ,  SiIlhXN,-COShXN,)+bN, SinhX,,+dN,(COS XN,-COS~XN,) 

= f T ( U k ,  sinh X N ~ + ~ + C O S ~  X N ~ + ~ ) +  bk ,  Sin XN,+1 

+ d’,,(cos X N ~ + I - C O S ~  XNI+l) (15) 

where xNI = x(x - fN1)  and xN,+, = x(x- fN,+))  with x = (1 - y2)-1’4. 
Equating the solutions (13) or (15) at the points X N l ,  it is possible to construct an 

expression for 4 , (x)  which is valid for all values of the variable x. Considering the 
second equation of the system (7), it is also possible to obtain an analogous expression 
for 42(x) as well. 

To define w 2  and +(x)  we return to (8). As a matter of fact, the procedure for 
solving this system is exactly the same as for (7). We only note that it is more convenient 
to look for a solution not in the form of a function $,(x), but to first find F l (x )=  
+;(x)/$dx). Then 

qp sinh(qpx+O)+ v;(x) 
cosh(qpx+ e ) +  v,(x) F,(x)  = 

for even N ,  
Y,(x )  = e,  C O S ( S ~ X +  e,) 
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where p and 7 have the same meaning as above, q2 = 1 - U :  and s2 = 1 +U: .  On the 
boundaries Fl(xo)=O. Using the solutions (11)-(16), it is possible, for given 2 ~ ,  to 
eliminate the unknown parameters and to obtain the equation for U’. Analogous 
expressions are also obtainable for $,(x) (or for F2(x)).  Thus the formulae (13)-(16), 
together with boundary conditions and requirement of continuity, allow one to find 
bound states and calculate their eigenfrequencies. If an eigenvalue of this problem 
vanishes (i.e. U’ = 0), then a bifurcation can take place. Therefore the equation 

w 2 = 0  (17) 
defines a surface of bifurcations for the problem under consideration (as we shall see 
later, bifurcations do take place). We note that equation (17) explicitly contains 
parameters of the problem (magnetic field intensity ho, weak coupling constant y and 
so on). Let us consider some examples. 

3. A system of homogeneous junctions 

A system of homogeneous semi-infinite identical JJ may serve as a simple example. 
In this case the boundary conditions (2) will take the form 

4YO) = ho 4’( 00) = 0. (18) 
With the help of relations (1 1)-( 15) we can construct the states of magnetic flux in 
each junction. For definiteness let us take the case when 4,(0) E I ,  and 4,(CO) E Z,, 
while N2 is an odd number. Then 

 COS p(x - x,) - tan(p2,) sin p(x - 2,)]  
41( x)  = + ( ho/ 7) sin ~ ( x  - 2,) + T O < x < X ,  (19) i 2~ -fv exp[-p(x - T,)] 2 2  < x. 

From the continuity condition for the derivative of 4 , (x )  at the point 2, we obtain 
the following equation for the unknown parameter Z2: 

ho = i ~ p  cos( 7X2)[ 1 + tan(p2,)l. (20) 

7 t a n ( 7 2 2 ) [ ( 1 / ~ ) + ~ ~ ~ ( 2 p ~ 2 + $ ~ ) ]  = a p .  (21) 

The bifurcation points 2, = fzc are defined by the condition dh0/dR2 = 0, i.e. 

The substitution of the above transcendental equation into (20) leads to a bifurcation 
curve ho( y ) .  Thus the qualitative structure of static states is the following. For given 
boundary values of the magnetic field there usually exist several states, differing in the 
amount and distribution of magnetic flux. Some of these states turn out to be locally 
stable and as seen from the bifurcation curve on figure 2 ,  for given values of boundary 
fields there exist more than one stable state. This means that the system under 
consideration is very sensitive to the variation of the parameter y. 

We will now construct and investigate the stability of the other static state 4 1 ( x ) ,  
which is still located on the same intervals, but the corresponding values of N2 are 
even. For this state, from the continuity requirement for d4 , (x) /dx  at x = Z2, we get 

(22) 
Defining the bifurcation points for this state, we obtain that RZc = 7/4p. Substituting 
fzc into (22) gives the bifurcation curve 

(23) 

ho = ( T / ~ ) P   COS(^^, - $7). 

hc= (../a)( 1 - y)-”’ 
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Figure 2. 

depicted in figure 2 by a broken curve. The bifurcation points can be also found via 
the relations (16): 

Equating the solutions at x = f 2  gives 

tan( ps.Q = 4s-'. ( 2 5 )  

At the bifurcation point U:= 0 (i.e. q = s = 1) and from (25) we obtain a value for f,, 
which coincides with the one defined above. From (23) and (25) we obtain the 
relationship between the eigenfrequency w 2  and the intensity of the external magnetic 
field: 

(26) 

Calculations based on the formula (26) show that this static state is stable in a 
narrow interval of values of the magnetic field intensity ho. Taking account of the 
weak coupling y leads to magnification of the critical field h, (for example, o2 is 
non-negative for 2.07 < ho < 2.33 when y = 0 and for 2.9 < ho < 3.14 when y = 0.5). 

U $  --- 4-( 8/ r) sin-'( ho/ h,). 

4. The system of junctions with one micro-inhomogeneity 

Let us consider semi-infinite JJS in the case when there is an inhomogeneity in one of 
the junctions. By inhomogeneity we shall mean here a region of local increase in 
junction resistance (the practical realisation of this situation is discussed in [ 161). 
Approximating an inhomogeneity by a S function, we rewrite the first equation of the 
system (1) in the form 
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0 

while the second equation will remain unchanged. Here p1 characterises the strength 
of the inhomogeneity and  x, is its coordinate. Picking out the static states, we come 
to the following equations: 

d J T ( x ) + y ~ ; ' ( x ) = [ 1 - ~ ~ , G ( x - x ~ ) l s i n  4 , ( x )  

4; (x)+  ydJl(x) = sin dJz(x) 

-[9T(x)+ Y+;'(X)l+[l -* ,S(x -x,)1$1(x) cos dJ,(x) = W 2 $ l ( X )  

-[$;(XI + Y$Y(X)l+ $Ax) cos dJ2(x) = w2$2(x). 

( 2 8 ~ )  

(28b) 

On the homogeneous intervals of x the solutions dJl(x), &(x) and  $,(x) ,  IL2(x) of the 
system (28) coincide with the corresponding expressions, obtained from (4) and ( 5 )  
for the homogeneous junctions. At the point x, , where the inhomogeneity is located, 
we have the jump condition for the first derivatives 

I 
I 
07 

and continuity of the functions themselves. 
Thus, the expressions (11)-(16) together with the conditions (29) now define the 

states of fluxons in JJS with one micro-inhomogeneity and eigenfrequencies of these 
states. 

Let us consider for definiteness the states in the semi-infinite JJS with the boundary 
conditions (18), for which &(x=O),  c $ J ~ ( x = x ~ ) E  Zl, while N2 is an  odd number. 
Writing solutions on homogeneous intervals in accordance with (13) and using the 
jump condition (29) at the point of inhomogeneity xl ,  we eliminate all unknown 
parameters, except f2, and obtain the following equation for f2: 

ho='2 A(x , ) s in  ~ 3 2 ~ + B ( x , ) c o s  7 ~ 2 + ( 1 - p - ~ C ( x 1 ) ) s i n p ( x l - f 2 ) - c o s p ( x l - f 2 )  . 
7l [ C ( x l )  cosp(x l - f , )+D(xt ) s inp(x l - f2 ) ]  cos r f 2  

(30) 

0 

I I 
I I 

61 0 2  0 3 0'4 0'5 0'6 0'7 
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where 

A(x,) = ~ - l ( p , +  1 - p  tan p x , ) - ’  cos rx, 

B(x,) = 7 - ’ [ 2 ( p  tan p x ,  + T tan Txl) - p l ]  sin T X ,  + 2 ( 1 -  T-’ tan TX,) COS Txl 

C (xd  = p ( 1  +tan p x , )  - pI D ( x , )  = C(x,) - 2 p .  

If we put x1 = 0 and p = 0, i.e. consider a homogeneous junction, then (30) coincides 
with (20). 

Defining the bifurcation points from the condition dho/df2 = 0, we find the critical 
values fzc and obtain the bifurcation curve h o ( y )  (see figure 3). We note that when 
p,  -0.1 the obtained dependence (figure 3 a )  coincides with the analogous one for the 
system of homogeneous junctions. In the case p l  - 1, a richer picture of fluxon states 
is realised than in the homogeneous case. We propose to carry out a more detailed 
investigation of this problem in a separate publication. 

5. Conclusion 

In the framework of the piecewise-linear model we have investigated the problem of 
propagating fluxons in JJS. The homogeneous semi-infinite JJS in an external magnetic 
field and some aspects of a JJS with a micro-inhomogeneity in one of the junctions 
were studied in detail. It was shown that in these systems there exist stable states of 
fluxons and their number depends on the parameters specifying the problem (magnetic 
field intensity ho, the factor y = exp(-d/h,), which defines the field attenuation in an 
S layer of thickness d ;  the coordinate x1 and the strength of inhomogeneity pl). As 
was noted, for some critical values of the parameters mentioned a bifurcation of states 
occurs. Some simple bifurcation surfaces have been presented. Finally, as one of the 
possible further applications of the approach considered, we would like to mention 
the problem of fluxons interacting in a system of identical Josephson junctions with 
different electric currents in them, which is of interest from a practical point of view. 
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